2023-01-12 15:00:14 -05:00
|
|
|
float phaseRayleigh(float cosTheta) {
|
|
|
|
const vec2 mul_add = vec2(0.1, 0.28) /acos(-1.0);
|
|
|
|
return cosTheta * mul_add.x + mul_add.y; // optimized version from [Elek09], divided by 4 pi for energy conservation
|
|
|
|
}
|
|
|
|
|
2023-04-16 16:18:26 -04:00
|
|
|
float densityAtPosFog(in vec3 pos){
|
|
|
|
pos /= 18.;
|
|
|
|
pos.xz *= 0.5;
|
|
|
|
vec3 p = floor(pos);
|
|
|
|
vec3 f = fract(pos);
|
|
|
|
f = (f*f) * (3.-2.*f);
|
|
|
|
vec2 uv = p.xz + f.xz + p.y * vec2(0.0,193.0);
|
|
|
|
vec2 coord = uv / 512.0;
|
|
|
|
vec2 xy = texture2D(noisetex, coord).yx;
|
|
|
|
return mix(xy.r,xy.g, f.y);
|
|
|
|
}
|
2023-01-12 15:00:14 -05:00
|
|
|
|
|
|
|
float cloudVol(in vec3 pos){
|
|
|
|
|
|
|
|
vec3 samplePos = pos*vec3(1.0,1./24.,1.0);
|
|
|
|
vec3 samplePos2 = pos*vec3(1.0,1./48.,1.0);
|
|
|
|
|
|
|
|
|
2023-04-16 16:18:26 -04:00
|
|
|
float mult = exp( -max((pos.y - SEA_LEVEL) / 35.,0.0));
|
|
|
|
|
|
|
|
float fog_shape = 1.0 - densityAtPosFog(samplePos * 24.0);
|
|
|
|
float fog_eroded = 1.0 - densityAtPosFog( samplePos2 * 200.0);
|
|
|
|
|
|
|
|
// float CloudyFog = max( (fog_shape*2.0 - fog_eroded*0.5) - 1.2, max(fog_shape-0.8,0.0)) * mult;
|
2023-01-12 15:00:14 -05:00
|
|
|
|
2023-04-16 16:18:26 -04:00
|
|
|
float CloudyFog = max((fog_shape*1.2 - fog_eroded*0.2) - 0.75,0.0) ;
|
2023-01-12 15:00:14 -05:00
|
|
|
|
|
|
|
float UniformFog = exp2( -max((pos.y - SEA_LEVEL) / 25.,0.0));
|
|
|
|
|
2023-04-16 16:18:26 -04:00
|
|
|
float RainFog = max(fog_shape*10. - 7.,0.5) * exp2( -max((pos.y - SEA_LEVEL) / 25.,0.0)) * 5. * rainStrength * RainFog_amount;
|
2023-01-12 15:00:14 -05:00
|
|
|
|
|
|
|
TimeOfDayFog(UniformFog, CloudyFog);
|
|
|
|
|
2023-06-10 23:30:29 -04:00
|
|
|
return CloudyFog + UniformFog;
|
2023-01-12 15:00:14 -05:00
|
|
|
}
|
|
|
|
|
2023-04-16 16:18:26 -04:00
|
|
|
vec4 getVolumetricRays(
|
|
|
|
vec3 fragpos,
|
2023-01-12 15:00:14 -05:00
|
|
|
float dither,
|
2023-04-16 16:18:26 -04:00
|
|
|
vec3 AmbientColor
|
2023-01-12 15:00:14 -05:00
|
|
|
){
|
|
|
|
//project pixel position into projected shadowmap space
|
|
|
|
vec3 wpos = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz;
|
|
|
|
vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz;
|
|
|
|
fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz;
|
|
|
|
|
|
|
|
//project view origin into projected shadowmap space
|
|
|
|
vec3 start = toShadowSpaceProjected(vec3(0.));
|
|
|
|
|
|
|
|
//rayvector into projected shadow map space
|
|
|
|
//we can use a projected vector because its orthographic projection
|
|
|
|
//however we still have to send it to curved shadow map space every step
|
|
|
|
vec3 dV = fragposition-start;
|
|
|
|
vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
|
|
|
|
|
|
|
|
float maxLength = min(length(dVWorld),far)/length(dVWorld);
|
|
|
|
dV *= maxLength;
|
|
|
|
dVWorld *= maxLength;
|
|
|
|
|
|
|
|
//apply dither
|
|
|
|
vec3 progress = start.xyz;
|
|
|
|
|
|
|
|
vec3 vL = vec3(0.);
|
|
|
|
|
|
|
|
float SdotV = dot(sunVec,normalize(fragpos))*lightCol.a;
|
|
|
|
float dL = length(dVWorld);
|
|
|
|
|
|
|
|
//Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx)
|
|
|
|
float mie = phaseg(SdotV,0.7)*5.0 + 1.0;
|
|
|
|
float rayL = phaseRayleigh(SdotV);
|
|
|
|
|
|
|
|
// Makes fog more white idk how to simulate it correctly
|
2023-04-16 16:18:26 -04:00
|
|
|
vec3 sunColor = lightCol.rgb / 80.0;
|
|
|
|
vec3 skyCol0 = AmbientColor / 150. * 5.; // * max(abs(WsunVec.y)/150.0,0.);
|
2023-01-12 15:00:14 -05:00
|
|
|
|
2023-06-08 18:44:09 -04:00
|
|
|
#ifdef Biome_specific_environment
|
|
|
|
// recolor change sun and sky color to some color, but make sure luminance is preserved.
|
|
|
|
BiomeFogColor(sunColor);
|
|
|
|
BiomeFogColor(skyCol0);
|
|
|
|
#endif
|
|
|
|
|
2023-01-12 15:00:14 -05:00
|
|
|
vec3 rC = vec3(fog_coefficientRayleighR*1e-6, fog_coefficientRayleighG*1e-5, fog_coefficientRayleighB*1e-5);
|
|
|
|
vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6);
|
|
|
|
|
|
|
|
float mu = 1.0;
|
|
|
|
float muS = mu;
|
2023-04-16 16:18:26 -04:00
|
|
|
float absorbance = 1.0;
|
2023-01-12 15:00:14 -05:00
|
|
|
float expFactor = 11.0;
|
2023-06-10 23:30:29 -04:00
|
|
|
|
2023-01-12 15:00:14 -05:00
|
|
|
vec3 WsunVec = mat3(gbufferModelViewInverse) * sunVec * lightCol.a;
|
|
|
|
|
2023-04-16 16:18:26 -04:00
|
|
|
vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
|
2023-01-12 15:00:14 -05:00
|
|
|
|
2023-04-16 16:18:26 -04:00
|
|
|
for (int i=0;i<VL_SAMPLES;i++) {
|
|
|
|
float d = (pow(expFactor, float(i+dither)/float(VL_SAMPLES))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
|
|
|
|
float dd = pow(expFactor, float(i+dither)/float(VL_SAMPLES)) * log(expFactor) / float(VL_SAMPLES)/(expFactor-1.0);
|
2023-01-12 15:00:14 -05:00
|
|
|
progress = start.xyz + d*dV;
|
|
|
|
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
|
2023-06-10 23:30:29 -04:00
|
|
|
|
2023-01-12 15:00:14 -05:00
|
|
|
//project into biased shadowmap space
|
|
|
|
float distortFactor = calcDistort(progress.xy);
|
|
|
|
vec3 pos = vec3(progress.xy*distortFactor, progress.z);
|
|
|
|
float densityVol = cloudVol(progressW);
|
|
|
|
float sh = 1.0;
|
2023-06-10 23:30:29 -04:00
|
|
|
|
|
|
|
|
|
|
|
// if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
|
|
|
// pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
|
|
|
// sh = shadow2D( shadow, pos).x;
|
|
|
|
// }
|
2023-04-16 16:18:26 -04:00
|
|
|
|
2023-01-12 15:00:14 -05:00
|
|
|
#ifdef VL_CLOUDS_SHADOWS
|
2023-04-16 16:18:26 -04:00
|
|
|
sh *= GetCloudShadow_VLFOG(progressW);
|
2023-01-12 15:00:14 -05:00
|
|
|
#endif
|
2023-06-10 23:30:29 -04:00
|
|
|
|
2023-01-12 15:00:14 -05:00
|
|
|
//Water droplets(fog)
|
|
|
|
float density = densityVol*ATMOSPHERIC_DENSITY*mu*300.;
|
|
|
|
|
|
|
|
//Just air
|
2023-04-16 16:18:26 -04:00
|
|
|
vec2 airCoef = exp(-max(progressW.y-SEA_LEVEL,0.0)/vec2(8.0e3, 1.2e3)*vec2(6.,7.0)) * 24 * Haze_amount;
|
2023-01-12 15:00:14 -05:00
|
|
|
|
|
|
|
//Pbr for air, yolo mix between mie and rayleigh for water droplets
|
|
|
|
vec3 rL = rC*airCoef.x;
|
|
|
|
vec3 m = (airCoef.y+density)*mC;
|
|
|
|
|
2023-04-16 16:18:26 -04:00
|
|
|
vec3 DirectLight = (sunColor*sh) * (rayL*rL+m*mie);
|
2023-01-12 15:00:14 -05:00
|
|
|
vec3 AmbientLight = skyCol0 * m;
|
|
|
|
vec3 AtmosphericFog = skyCol0 * (rL+m) ;
|
|
|
|
|
2023-04-16 16:18:26 -04:00
|
|
|
// extra fog effects
|
|
|
|
vec3 rainRays = (sunColor*sh) * (rayL*phaseg(SdotV,0.5)) * clamp(pow(WsunVec.y,5)*2,0.0,1) * rainStrength * RainFog_amount;
|
|
|
|
vec3 CaveRays = (sunColor*sh) * phaseg(SdotV,0.7) * 0.001 * (1.0 - max(eyeBrightnessSmooth.y,0)/240.);
|
2023-06-08 18:44:09 -04:00
|
|
|
|
2023-06-10 23:30:29 -04:00
|
|
|
vec3 vL0 = (DirectLight + AmbientLight + AtmosphericFog + rainRays ) * max(eyeBrightnessSmooth.y,0)/240. + CaveRays ;
|
2023-04-16 16:18:26 -04:00
|
|
|
|
|
|
|
vL += (vL0 - vL0 * exp(-(rL+m)*dd*dL)) / ((rL+m)+0.00000001)*absorbance;
|
|
|
|
absorbance *= dot(clamp(exp(-(rL+m)*dd*dL),0.0,1.0), vec3(0.333333));
|
2023-01-12 15:00:14 -05:00
|
|
|
}
|
2023-04-16 16:18:26 -04:00
|
|
|
return vec4(vL,absorbance);
|
2023-06-10 23:30:29 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vec4 InsideACloudFog(
|
|
|
|
vec3 fragpos,
|
|
|
|
vec2 Dither,
|
|
|
|
vec3 SunColor,
|
|
|
|
vec3 MoonColor,
|
|
|
|
vec3 SkyColor
|
|
|
|
){
|
|
|
|
#ifndef VOLUMETRIC_CLOUDS
|
|
|
|
return vec4(0.0,0.0,0.0,1.0);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
float total_extinction = 1.0;
|
|
|
|
vec3 color = vec3(0.0);
|
|
|
|
|
|
|
|
//project pixel position into projected shadowmap space
|
|
|
|
vec3 wpos = mat3(gbufferModelViewInverse) * fragpos + gbufferModelViewInverse[3].xyz;
|
|
|
|
vec3 fragposition = mat3(shadowModelView) * wpos + shadowModelView[3].xyz;
|
|
|
|
fragposition = diagonal3(shadowProjection) * fragposition + shadowProjection[3].xyz;
|
|
|
|
|
|
|
|
//project view origin into projected shadowmap space
|
|
|
|
vec3 start = toShadowSpaceProjected(vec3(0.));
|
|
|
|
|
|
|
|
//rayvector into projected shadow map space
|
|
|
|
//we can use a projected vector because its orthographic projection
|
|
|
|
//however we still have to send it to curved shadow map space every step
|
|
|
|
vec3 dV = fragposition-start;
|
|
|
|
vec3 dVWorld = (wpos-gbufferModelViewInverse[3].xyz);
|
|
|
|
|
|
|
|
// float maxLength = min(length(dVWorld),16*8)/length(dVWorld);
|
|
|
|
float maxLength = min(length(dVWorld),far+16)/length(dVWorld);
|
|
|
|
dV *= maxLength;
|
|
|
|
dVWorld *= maxLength;
|
2023-06-10 23:50:44 -04:00
|
|
|
float mult = length(dVWorld)/25;
|
2023-06-10 23:30:29 -04:00
|
|
|
float dL = length(dVWorld);
|
|
|
|
|
|
|
|
vec3 progress = start.xyz;
|
|
|
|
vec3 progressW = gbufferModelViewInverse[3].xyz+cameraPosition;
|
|
|
|
vec3 progress_view = vec3(0.0);
|
|
|
|
float expFactor = 11.0;
|
|
|
|
|
|
|
|
////// lighitng stuff
|
|
|
|
float shadowStep = 200.;
|
|
|
|
vec3 dV_Sun = normalize(mat3(gbufferModelViewInverse)*sunVec)*shadowStep;
|
|
|
|
vec3 dV_Sun_small = dV_Sun/shadowStep;
|
|
|
|
|
|
|
|
float SdotV = dot(sunVec,normalize(fragpos));
|
|
|
|
|
|
|
|
SkyColor *= clamp(abs(dV_Sun.y)/100.,0.75,1.0);
|
|
|
|
SunColor = SunColor * clamp(dV_Sun.y ,0.0,1.0);
|
|
|
|
MoonColor *= clamp(-dV_Sun.y,0.0,1.0);
|
|
|
|
|
|
|
|
vec3 Fog_SkyCol = SkyColor;
|
|
|
|
vec3 Fog_SunCol = SunColor;
|
|
|
|
|
|
|
|
// if(dV_Sun.y/shadowStep < -0.1) dV_Sun = -dV_Sun;
|
|
|
|
|
|
|
|
float mieDay = phaseg(SdotV, 0.75) * 3.14;
|
|
|
|
float mieDayMulti = phaseg(SdotV, 0.35) * 2;
|
|
|
|
|
|
|
|
vec3 sunContribution = SunColor * mieDay;
|
|
|
|
vec3 sunContributionMulti = SunColor * mieDayMulti ;
|
|
|
|
|
|
|
|
float mieNight = (phaseg(-SdotV,0.8) + phaseg(-SdotV, 0.35)*4);
|
|
|
|
vec3 moonContribution = MoonColor * mieNight;
|
|
|
|
|
|
|
|
float timing = 1.0 - clamp(pow(abs(dV_Sun.y)/150.0,2.0),0.0,1.0);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///////// fog part
|
|
|
|
|
|
|
|
//Mie phase + somewhat simulates multiple scattering (Horizon zero down cloud approx)
|
|
|
|
float mie = phaseg(SdotV,0.7)*5.0 + 1.0;
|
|
|
|
float rayL = phaseRayleigh(SdotV);
|
|
|
|
|
|
|
|
#ifdef Biome_specific_environment
|
|
|
|
// recolor change sun and sky color to some color, but make sure luminance is preserved.
|
|
|
|
BiomeFogColor(Fog_SunCol);
|
|
|
|
BiomeFogColor(Fog_SkyCol);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
vec3 rC = vec3(fog_coefficientRayleighR*1e-6, fog_coefficientRayleighG*1e-5, fog_coefficientRayleighB*1e-5);
|
|
|
|
vec3 mC = vec3(fog_coefficientMieR*1e-6, fog_coefficientMieG*1e-6, fog_coefficientMieB*1e-6);
|
|
|
|
|
|
|
|
float mu = 1.0;
|
|
|
|
float muS = mu;
|
|
|
|
|
|
|
|
#ifdef Cumulus
|
|
|
|
for (int i=0;i<VL_SAMPLES;i++) {
|
|
|
|
float d = (pow(expFactor, float(i+Dither.x)/float(VL_SAMPLES))/expFactor - 1.0/expFactor)/(1-1.0/expFactor);
|
|
|
|
float dd = pow(expFactor, float(i+Dither.x)/float(VL_SAMPLES)) * log(expFactor) / float(VL_SAMPLES)/(expFactor-1.0);
|
|
|
|
progress = start.xyz + d*dV;
|
|
|
|
progressW = gbufferModelViewInverse[3].xyz+cameraPosition + d*dVWorld;
|
|
|
|
|
|
|
|
//project into biased shadowmap space
|
|
|
|
float distortFactor = calcDistort(progress.xy);
|
|
|
|
vec3 pos = vec3(progress.xy*distortFactor, progress.z);
|
|
|
|
float sh = 1.0;
|
|
|
|
|
|
|
|
if (abs(pos.x) < 1.0-0.5/2048. && abs(pos.y) < 1.0-0.5/2048){
|
|
|
|
pos = pos*vec3(0.5,0.5,0.5/6.0)+0.5;
|
|
|
|
sh = shadow2D( shadow, pos).x;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
2023-06-10 23:42:45 -04:00
|
|
|
float cloudhsadow = 1;
|
2023-06-10 23:30:29 -04:00
|
|
|
#ifdef VL_CLOUDS_SHADOWS
|
2023-06-10 23:42:45 -04:00
|
|
|
cloudhsadow = sh * GetCloudShadow_VLFOG(progressW);
|
2023-06-10 23:30:29 -04:00
|
|
|
#endif
|
|
|
|
|
|
|
|
float densityVol = cloudVol(progressW);
|
|
|
|
//Water droplets(fog)
|
|
|
|
float density = densityVol*ATMOSPHERIC_DENSITY*mu*300.;
|
|
|
|
|
|
|
|
//Just air
|
|
|
|
vec2 airCoef = exp(-max(progressW.y-SEA_LEVEL,0.0)/vec2(8.0e3, 1.2e3)*vec2(6.,7.0)) * 24 * Haze_amount;
|
|
|
|
|
|
|
|
//Pbr for air, yolo mix between mie and rayleigh for water droplets
|
|
|
|
vec3 rL = rC*airCoef.x;
|
|
|
|
vec3 m = (airCoef.y+density)*mC;
|
|
|
|
|
2023-06-10 23:42:45 -04:00
|
|
|
vec3 DirectLight = (Fog_SunCol*cloudhsadow) * (rayL*rL+m*mie);
|
2023-06-10 23:30:29 -04:00
|
|
|
vec3 AmbientLight = Fog_SkyCol * m;
|
|
|
|
vec3 AtmosphericFog = Fog_SkyCol * (rL+m) ;
|
|
|
|
|
|
|
|
// extra fog effects
|
2023-06-10 23:42:45 -04:00
|
|
|
vec3 rainRays = (sunColor*cloudhsadow) * (rayL*phaseg(SdotV,0.5)) * clamp(pow(WsunVec.y,5)*2,0.0,1) * rainStrength * RainFog_amount;
|
|
|
|
vec3 CaveRays = (sunColor*cloudhsadow) * phaseg(SdotV,0.7) * 0.001 * (1.0 - max(eyeBrightnessSmooth.y,0)/240.);
|
2023-06-10 23:30:29 -04:00
|
|
|
|
|
|
|
vec3 vL0 = (DirectLight + AmbientLight + AtmosphericFog + rainRays ) * max(eyeBrightnessSmooth.y,0)/240. + CaveRays ;
|
|
|
|
|
|
|
|
color += (vL0 - vL0 * exp(-(rL+m)*dd*dL)) / ((rL+m)+0.00000001)*total_extinction;
|
|
|
|
total_extinction *= dot(clamp(exp(-(rL+m)*dd*dL),0.0,1.0), vec3(0.333333));
|
|
|
|
|
|
|
|
|
|
|
|
progress_view = progressW;
|
|
|
|
float cumulus = GetCumulusDensity(progress_view, 1);
|
|
|
|
|
|
|
|
float alteredDensity = Cumulus_density * clamp(exp( (progress_view.y - (MaxCumulusHeight - 75)) / 9.0 ),0.0,1.0);
|
|
|
|
|
|
|
|
if(cumulus > 1e-5){
|
|
|
|
float muE = cumulus*alteredDensity;
|
|
|
|
|
|
|
|
float Sunlight = 0.0;
|
|
|
|
float MoonLight = 0.0;
|
|
|
|
|
|
|
|
for (int j=0; j < 3; j++){
|
|
|
|
|
|
|
|
vec3 shadowSamplePos = progress_view + (dV_Sun * 0.15) * (1 + Dither.y/2 + j);
|
|
|
|
|
|
|
|
float shadow = GetCumulusDensity(shadowSamplePos, 0) * Cumulus_density;
|
|
|
|
|
|
|
|
Sunlight += shadow / (1 + j);
|
|
|
|
MoonLight += shadow;
|
|
|
|
}
|
2023-06-10 23:42:45 -04:00
|
|
|
|
|
|
|
Sunlight += (1-sh) * 100.;
|
|
|
|
MoonLight += (1-sh) * 100.;
|
2023-06-10 23:30:29 -04:00
|
|
|
|
|
|
|
#ifdef Altostratus
|
|
|
|
// cast a shadow from higher clouds onto lower clouds
|
|
|
|
vec3 HighAlt_shadowPos = progress_view + dV_Sun/abs(dV_Sun.y) * max(AltostratusHeight - progress_view.y,0.0);
|
|
|
|
float HighAlt_shadow = GetAltostratusDensity(HighAlt_shadowPos);
|
|
|
|
Sunlight += HighAlt_shadow;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
float ambientlightshadow = 1.0 - clamp(exp((progress_view.y - (MaxCumulusHeight - 50)) / 100.0),0.0,1.0) ;
|
|
|
|
|
|
|
|
|
|
|
|
vec3 S = Cloud_lighting(muE, cumulus*Cumulus_density, Sunlight, MoonLight, SkyColor, sunContribution, sunContributionMulti, moonContribution, ambientlightshadow, 0, progress_view, timing);
|
|
|
|
|
|
|
|
|
|
|
|
vec3 Sint = (S - S * exp(-mult*muE)) / muE;
|
|
|
|
color += max(muE*Sint*total_extinction,0.0);
|
|
|
|
total_extinction *= max(exp(-mult*muE),0.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (total_extinction < 1e-5) break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return vec4(color, total_extinction);
|
|
|
|
}
|